The ADS works by firing a high-powered beam of 95 GHz waves at a target, which corresponds to a wavelength of 3.2 mm.The ADS millimeter wave energy works on a similar principle as a microwave oven, exciting the water and fat molecules in the skin, and instantly heating them via dielectric heating. One significant difference is that a microwave oven uses the much lower frequency (and longer wavelength) of 2.45 GHz. The short millimeter waves used in ADS only penetrate the top layers of skin, with most of the energy being absorbed within 0.4 mm (1/64"), whereas microwaves will penetrate into human tissue about 17mm (0.67").
The ADSʼs repel effect in humans occurs at slightly higher than 44 °C (111 °F), though first-degree burns occur at about 51 °C (124 °F), and second-degree burns occur at about 58 °C (136 °F).
In testing, pea-sized blisters have been observed in less than 0.1% of ADS exposures, indicating that second degree surface burns have been caused by the device.The radiation burns caused are similar to microwave burns, but only on the skin surface due to the decreased penetration of shorter millimeter waves. The surface temperature of a target will continue to rise so long as the beam is applied, at a rate dictated by the target's material and distance from the transmitter, along with the beam's frequency and power level set by the operator. Most human test subjects reached their pain threshold within 3 seconds, and none could endure more than 5 seconds.
Possible long-term effects
Many possible long-term effects have been studied, with the conclusion that no long-term effects are likely at the exposure levels studied. However, overexposures of either operators or targets may cause long-term damage including cancer. According to an official military assessment, "In the event of an overexposure to a power density sufficient to produce thermal injury, there is an extremely low probability that scars derived from such injury might later become cancerous. Proper wound management further decreases this probability, as well as the probability of hypertrophic scarring or keloid formation."- Cancer: A mouse cancer study was performed at two energy levels and exposures with a 94 GHz transmitter: a single 10 second, 1 W/cm exposure; and repeated 10 second exposures over 2 week period at 333 mW/cm. At both energy levels, no increase in skin cancers were observed.No studies of higher energy levels, or longer exposure times have been performed on millimeter wave systems.
- Cornea damage: tests on non-human primate eyes have observed no short-term or long-term damage as the blink reflex protects the eye from damage within 0.25 seconds.
- Birth defects: millimeter waves only penetrate 0.4mm (1/64") into the skin, making direct damage to the testes or ovaries impossible.
- Blisters and scarring: pea-sized blistering due to second degree burns occurred in a very small minority (less than 0.1%) of tested exposures, which have a remote potential for scarring.
TIA-1113 defines modem operations on user-premises electrical wiring. The new standard is the world's first multi-megabit powerline communications standard approved by an American National Standards Institute (ANSI)-accredited organization.
HomePlug 1.0 Turbo adapters comply with the HomePlug 1.0 specification but employ a faster, proprietary mode that increases the peak PHY-rate to 85 Mbit/s.
Long haul, low frequency
Utility companies use this special coupling capacitors to connect radio transmitters to the power-frequency AC conductors. Frequencies used are in the range of 24 to 500 kHz, with transmitter power levels up to hundreds of watts. These signals may be impressed on one conductor, on two conductors or on all three conductors of a high-voltage AC transmission line. Several PLC channels may be coupled onto one HV line. Filtering devices are applied at substations to prevent the carrier frequency current from being bypassed through the station apparatus and to ensure that distant faults do not affect the isolated segments of the PLC system. These circuits are used for control of switchgear, and for protection of transmission lines. For example, a protective relay can use a PLC channel to trip a line if a fault is detected between its two terminals, but to leave the line in operation if the fault is elsewhere on the system.On some powerlines in the former Soviet Union, PLC-signals are not fed into the high voltage line, but in the ground conductors, which are mounted on insulators at the pylons.
While utility companies use microwave and now, increasingly, fiber optic cables for their primary system communication needs, the power-line carrier apparatus may still be useful as a backup channel or for very simple low-cost installations that do not warrant installing fiber optic lines.
Power-line carrier communication (PLCC) is mainly used for telecommunication, tele-protection and tele-monitoring between electrical substations through power lines at high voltages, such as 110 kV, 220 kV, 400 kV.The major benefit is the union of two applications in a single system, which is particularly useful for monitoring electric equipment and advanced energy management techniques (such as OpenADR and OpenHAN).
The modulation generally used in these system is amplitude modulation. The carrier frequency range is used for audio signals, protection and a pilot frequency. The pilot frequency is a signal in the audio range that is transmitted continuously for failure detection.
The voice signal is compressed and filtered into the 300 Hz to 4000 Hz range, and this audio frequency is mixed with the carrier frequency. The carrier frequency is again filtered, amplified and transmitted. The transmission power of these HF carrier frequencies will be in the range of 0 to +32 dbW. This range is set according to the distance between substations. PLCC can be used for interconnecting private branch exchanges (PBXs).
To sectionalize the transmission network and protect against failures, a "wave trap" is connected in series with the power (transmission) line. They consist of one or more sections of resonant circuits, which block the high frequency carrier waves (24 kHz to 500 kHz) and let power frequency current (50 Hz – 60 Hz) pass through. Wave traps are used in switchyard of most power stations to prevent carrier from entering the station equipment. Each wave trap has a lightning arrester to protect it from surge voltages.
A coupling capacitor is used to connect the transmitters and receivers to the high voltage line. This provides low impedance path for carrier energy to HV line but blocks the power frequency circuit by being a high impedance path. The coupling capacitor may be part of a capacitor voltage transformer used for voltage measurement.
No comments:
Post a Comment